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Abstract—Traffic classification is an important task for pro-
viding differentiated service quality to applications and also for
security monitoring. With the advent of peer-to-peer applications
and tunneling techniques it is becoming increasingly difficult to
identify the traffic without going to the application semantics.
Several approaches have been proposed (with varied success)
which use machine learning techniques to identify the application
traffic. In this paper we propose a novel technique based on
application behavior based feature extraction and classification.
We experiment with Google Hangout as a case study and report
its detection results. Google Hangout is a semi peer-to-peer
application allowing two parties to do video chat online. We
performed experiments with a dataset consisting of several hours
of network traffic consisting of 2.5 million packets and report
results on 3 classification algorithms namely Naive Base, decision
tree and AdaBoost. We conducted 3 sets of experiments with
different combinations of data and performed 10 fold cross
validation in each case to assess the classification performance.

I. INTRODUCTION

Application identification is at the center of many security

operations. An organization can have security policies to

permit certain type of application and block others. This could

be solely driven by security or can be of Quality of Service

(QoS) issue. In QoS certain types of applications traffic may

get preferential treatment compared to others. For example in

a office environment email traffic can be given preference over

video download. Often the very nature of traffic demands such

preference be given; for example audio traffic is sensitive to

delay and video content is sensitive to jitter, etc.

Historically such application traffic was identified using

port numbers [1], [2] as most applications used standard

port numbers defined by IANA. In that scenario it was just

sufficient to either allow, block or apply QoS on a packet

based on port number. With the emergence of peer to peer

applications like eDonkey [3], emule [4] and Internet traffic

anonymizers like UltraSurf [5], Tor [6] and tunnelling of traffic

under non conventional port numbers this method is no longer

effective [7]. To overcome this Deep Packet Inspection (DPI)

was introduced which uses application protocol content and

semantics to detect type of application. Unfortunately this

requires traffic in plain text format and currently majority

of applications communicating over internet uses encryption.

Thus deep packet inspection is not possible [8] by a third

party sitting in between unless the connection is completely

intercepted and deciphered. Further given the growing network

bandwidth of today’s networks, DPI is expensive to perform

[9], [10], [11]. Further there is a lack of publicly available

datasets and tools for performance comparison. Recently re-

search community has started working towards having an open

platform [12] for traffic classification.

There are several commercial grade tools performing traffic

classification based on different techniques. For example Sand-

vine [13] uses the site certificate exchanges in the beginning

and classify the subsequent communications to the IP address

of certificate.

Port based and payload based classification techniques does

not work well in encrypted environment [9]. There are several

attempts to use machine learning based classification methods

[14], [15], [16], [17] to identify encrypted traffic. PacketShaper

[18] is another application QoS instrument available publicly.

Rest of this paper is organized as follows. In section II,

works on traffic classification are described. In section III,

Google Hangout communication behavior is explained. In

the next section IV set of features used for classification

and motivation for selecting those features are elaborated.

Experiments done and performance of proposed method is

described in section V and finally paper is concluded in section

VI.

II. RELATED WORK

Traffic classification techniques found in literature falls into

signature based, statistical methods and flow based methods.

Following 3 subsections describe each of these categories.

A. Signature Matching

As the name suggests these methods use signatures written

on application protocol behavior and invariant content or

pattern. Some of the commercial Unified Thread Mitigation

appliances like Palo Alto Networks [19] uses decryption of

encrypted traffic and signatures to identify Gtalk and other

applications. Taking motivations from the fact that signature

based deep packet analysis is time consuming and error prone;

in [20] an automated signature extraction method which is ca-

pable of discovering new applications is proposed. Signatures

are based on packet payload content and are generated with

invariant parts of payloads in different flows. Further these

signatures can be encoded as text-based or binary data.978-1-4799-6619-6/15/$31.00 c© 2015 IEEE



B. Statistical Methods

These methods uses statistics derived out of packets [21]

(like inter arrival timings of packets, average packet size)

and traffic distribution of applications as features to identify

application.

Philip Branch [22] uses inter arrival timing of packets and

packet length as features to train a machine learning algorithm

and identify traffic class. The choice of inter-arrival time serves

as a parameter because real time applications have stringent

timing requirements and for the same reason even packet

length is also an useful feature in detecting such applications.

C. Flow Classification

Flow based methods use characteristics of flows like dura-

tion of flow, average number of packets, average packets size,

etc [23], [24]. to identify applications. In [25] multilevel flow

characteristics are used to identify flows belonging to different

classes.

A hybrid classifier including K-nearest neighbor and k-

means clustering algorithms are used to classify flows [15]

using 17 attributes. In a similar approach [26] flows are

classified using a machine learning algorithm with features

extracted from the packet headers. One of the limitation of

this work is it uses a public dataset which is anonymized with

an assumption that port numbers in packet headers correctly

identify applications which is not true in case of peer to peer

applications.

Dorfinger et. al [27] used entropy of the first packet in a

flow to classify a flow as encrypted or not. Here the first

packet means first packet with payload excluding the TCP

3-way handshake packets. This work does not identify the

applications but only whether the flow is encrypted or non

encrypted.

Alshammari and Zincir-Heywood [16] also used NetMate

to derive statistics from flows and used machine learning

algorithms namely Naive Base, SVM and C4.5 and Ripper

to classify SSH and Skype traffic with a reported accuracy

ranging between 84% to 97%.

Zhang et. al [17] use correlation information among flows

to classify network traffic into different applications. The

correlation is defined over bag of flows. BoF is formed using

a 3 tuple heuristics comprising of destination IP address,

destination port and protocol. A probabilistic model created

to use the correlation information among BoF is used as a

feature for Nearest Neighbor Classifier. Experiments on two

large real network traces yielded accuracy ranging from 60%

to 85% for different applications.

III. GOOGLE HANGOUT BEHAVIOUR

Google Hangout is an application allowing users to text

chat, perform voice over IP communication and video chat.

Google Hangout is not a pure peer-to-peer application but

possess characteristics of a peer-to-peer communications as

it allows two clients to communicate in real-time through a

conference server chosen dynamically. For the same reason it

can be called as a semi peer-to-peer application. The sequence

of operations in a Hangout communication is shown in Figure

1. Typically a user supplies her account credentials and these

credentials are verified by Google account server which is

a common account server for all Google services. After the

account credentials are verified, Hangout client connects to one

of the several connection1 servers. The client application uses

TCP packets to connect and exchange data with connection

server. To our understanding the details of peer users who

are online and their status is periodically updated through this

TCP connection. When the user selects one or more peer users

and starts a video chat; a conference server is identified and

connected. To carry video content generated during a video

chatting session Google Hangout prefers UDP as a transport

layer protocol.

TCP packets uses TSL protocol to encrypt the packets and

hence are sent to destination port 443 of connection server.

The number of TCP connections to connection server will be

more than 1 (ranging from 1-14 in our experiments) all of them

using a different source port number. In most of the cases

data is exchanged using only one of the TCP connections.

Remaining connections will be either closed after a while or

used occasionally.

A. DNS Name Resolution

Before a Hangout client is connected and is online there are

sequence of DNS queries made. The sequence of DNS name

resolutions is shown in Figure 2. The first DNS query is to the

accounts.Google.com name server to which user credentials

are supplied. Once the credentials are verified the next DNS

query is to one of the client servers. These client servers are

named client*.goole.com where * takes numeric value. In our

experiments we saw its value being 4, 5 and 6 in most cases.

The reply to this DNS query is an IP addresses indicating the

connection server to which client can connect and acquire a

list of peer users who are online and offline. When the user

initiate a video chat, another DNS query stun.l.goole.com is

sent to get the list of available conference servers. This name

resolution always yielded a list of 12 IP addresses in our

experiments. Our current understanding is these conference

servers are chosen based on location of two clients engaging

in online communication.

B. Data Exchange

Google Hangout uses STUN packets at regular intervals

to maintain the connectivity between client and conference

server. Google Hangout uses Session Initiation Protocol to

maintain the session between client and conference server. As

in most of the cases client will be behind a NAT can not

directly interact with the server. STUN is protocol designed

for a NATed client to query the connection between itself

and server. STUN packets are exchanged with the conference

server to query whether client can connect to conference

server. There are different types of STUN packets and these are

sent at particular events. Video data in Hangout is transmitted

1The name connection server is used here for the lack of a better name



Fig. 1. Hangout Operation Sequence

Fig. 2. DNS Name Resolution Sequence in Google Hangout

using UDP as a prefereed transport layer protocol however it

can use TCP too. UDP packets are sent to the same server

as STUN packets with different source port numbers (3-4)

and share a common destination port with STUN. These UDP

source port numbers alternate at irregular intervals.

IV. FEATURE EXTRACTION AND CLASSIFICATION

A. Feature Extraction

Our method of identification is per packet based identifica-

tion rather than flow based or session based found in literature.

We use a hybrid approach of Google Hangout communication

and follow the connection streams and subsequently feed to a

trained classifier for decision making2.

As discussed in the previous section connection is made to

one of the conference server offered by the Google servers. As

a first step we identify the DNS resolution sequence in network

traffic and by virtue of that we can identify the conference

server. Subsequently we follow the connections made to the

conference server. Based on the Hangout connection behavior

we use 7 features listed in Table I to classify the packets.

TABLE I
FEATURE SET

SN Feature Value
1 Is Packet is to/from One of the confer-

ence Server Offered in DNS reply to
clients*.Google.com

Yes/No/NA

2 Layer 4 Protocol UDP/TCP
3 Is UDP using Same Source Port as

STUN
Yes/No/NA

4 Destination Port Number Integer
5 Is Packet is to/from One of the Con-

ference Server Offered in DNS reply to
stun.l.Google.com

Yes/No/NA

6 Packet Length Integer
7 Type of STUN Packet Binding Request,

Binding success
response,
Binding response
to server, Binding
success response
user from server,
Binding request
user with id from
server, NA

B. Classification Algorithms

We experiment with 3 different classification algorithms

namely Naive Base, AdaBoost and J48 decision tree algo-

rithms which are explained below in brief.

1) Naive Base Algorithm: Naive Base is a statistical clas-

sification algorithm based on Bayes theorem. It predicts the

posterior probability of instance belonging to a particular class

using prior probabilities of various attributes and their proba-

bility of belonging to a particular class. For calculating prior

probabilities of various attributes it assumes class conditional

Independence i.e., every attribute is independent of every other

attribute so that probability of a attribute and its probability of

belonging to a class can be easily calculated by just counting

the occurrences of attribute and class together.

2) AdaBoost: AdaBoost is a weighted ensemble classifi-

cation method where several classification models are used

to decide the class label of an instance. Given a dataset D

of size n belonging to one of the C classes it samples the

dataset and use it for creating a classification model. Totally

K such training models are created by sampling the dataset.

The algorithm adjusts the weights of samples after assessing

the effectiveness of model Mi before creating the model Mi+1.

2classification starts after the DNS resolution sequence is completed



3) J48: It is a decision tree algorithm and hence generates

decision tree from the input training samples. To begin with

it selects an attribute which best classifies the classes i.e., an

attribute with highest information gain. If any of the values for

this attribute if there is no ambiguity for class assignment then

the branch is terminated otherwise another attribute is chosen

with highest gain and class assignment procedure is repeated.

V. EXPERIMENTS

In this section we describe the experiments done to verify

the proposed approach of identifying Google Hangout packets.

The first part of the experiments is to collect labeled dataset

with ground truth assigned. We collected dataset from few

home computers connected to Internet using ADSL connectiv-

ity with Wireshark [28] on a windows machine. We collected

data in two parts first is data of non Google Hangout traffic

and second is exclusively of Google Hangout traffic. In both

the cases due care is taken not to contaminate traffic. In the

first case, all Google services are manually terminated and

traffic was recorded. In this duration none of the Google

services including Google’s search engine was used. In the

second part exclusively Hangout traffic is collected by running

only Hangout client and terminating all other Google services.

Both the traces are manually analyzed for the presence of

contamination. Table II shows the details of dataset collected

and their approximate size and duration. We do experiments

in 3 stages in the first case we classify Goggle Hangout

traffic with non Google service traffic. This is a two class

classification problem and is discussed in section V-A. In the

second phase we address the problem of classifying Hangout

traffic with other Google service traffic and also with rest of

traffic these experiments are discussed in section V-B. We

also do a third variation with 4 class classification with some

common behaviors of Google services being classified into a

fourth class and these experiments are detailed in section V-C.

A. Two Class Classification of Hangout and Others

Once the traces for both cases are collected next step was to

extract features from packets and appropriately label them. We

wrote a java program using jnetpacp[29] library to read traces

and extract features mentioned in section IV. Once the labelled

feature vectors are obtained next step was to use classification

algorithms mentioned above and train the classifier. In our

experiments we used Weka tool [30] to train and classify

the feature vectors. We did 10 fold cross validation to infer

the performance of classifier. Performance of each type of

classifier is reported as a confusion matrix. Table III, IV and V

shows the confusion matrix for Naive Base, J48 and AdaBoost

algorithms. Recall of Hangout packets for various algorithms

is shown in Table VI. We can notice from these 3 tables that

Naive Base algorithm performed poorly and j48 algorithm has

a better classification accuracy.

B. Classifying Hangout and Gmail Packets Using 3 class

Classification

In the second set we conducted experiments to accurately

classify Hangout packets with other Google services traffic.

TABLE III
CONFUSION MATRIX FOR NAVE BAYES CLASSIFICATION

Actual Label Classified as Not
Hangout

Classified as
Hangout

Not Hangout 1984948 0
Hangout 14368 674657

TABLE IV
CONFUSION MATRIX FOR J48 CLASSIFICATION

Actual Label Classified as Not
Hangout

Classified as
Hangout

Not Hangout 1984949 5
Hangout 10 689015

TABLE V
CONFUSION MATRIX FOR ADABOOST

Actual Label Classified as Not
Hangout

Classified as
Hangout

Not Hangout 1984945 9
Hangout 5 689020

TABLE VI
RECALL FOR VARIOUS CLASSIFICATION ALGORITHMS

Algorithm Recall
Naive Base 97.91%

AdaBoost 99.99%
J48 99.99%

We used gmail traffic in the experiments as a sample case.

We collected gmail traffic separately by following the similar

steps as in the case of Hangout. The details of the datset

used for this experiment is shown in Table VII. Same set of

features are extracted and feature vectors are labeled manually

as in previous case. The classification performance of various

algorithms for this experiment is tabulated in Table VIII, Table

IX and Table X. One of the issue with this experiment is,

Google services use only one account type for all services

and there are many steps which are common particularly initial

account verification and login connection to connection server

is found in both Hangout and Gmail services. Figure 3 shows

the sequence of DNS resolution operations in gmail. We can

notice the first two steps are same as in Hangout this leads

to difficulty in classification and as a result there are few

misclassifications. For example j48 classifier which performed

better with very few misclassifications previously also now has

more missed detection cases. For the other two algorithms

too similar trend was observed. The reason for increased

misclassification is attributed to the common behavior found

in gmail and Hangout (which is addressed using a 4 class

classification detailed in next sub section).

TABLE VIII
CONFUSION MATRIX FOR NAVE BAYES CLASSIFICATION

Actual Label Classified as
Not Hangout

Classified as
Hangout

Classified as
Gmail

Not Hangout 1979714 0 5240
Hangout 94 344289 1853
Gmail 0 0 331963



TABLE II
DATASET DETAILS

Packet Type Packet
Count

Percentage Duration of
Data Collection

Size of Data

Google Hangout 689025 25.76% 7 Hours 350 MB
Non Hangout 1984954 79.81% 12 Hours 1.5 GB

TABLE VII
DATASET DETAILS FOR HANGOUT AND GMAIL TRAFFIC IDENTIFICATION

Packet Type Packet
Count

Percentage Duration of
Data Collection

Size of Data

Google Hangout 346236 13.0% 4 Hours 200 MB
Gmail 331963 12.4% 4 Hours 400 MB
Non Hangout 1984954 74.6% 12 Hours 1.5 GB

Fig. 3. Gmail Operation Sequence

TABLE IX
CONFUSION MATRIX FOR J48 CLASSIFICATION

Actual Label Classified as
Not Hangout

Classified as
Hangout

Classified as
Gmail

Not Hangout 1984954 0 0
Hangout 0 346194 42
Gmail 0 0 331963

TABLE X
CONFUSION MATRIX FOR ADABOOST CLASSIFICATION

Actual Label Classified as
Not Hangout

Classified as
Hangout

Classified as
Gmail

Not Hangout 1984954 0 0
Hangout 0 344383 1853
Gmail 0 0 331963

TABLE XI
RECALL FOR 3 CLASS CLASSIFICATION

Algorithm Recall
Naive Base 99.98%

AdaBoost 99.99%
J48 99.46%

C. Classifying Hangout and Gmail Packets using 4 class

Classification

This set of experiments use commonalities among Hangout

and Gmail as a separate class into Google Plus specifically

steps 1 to 3 in name resolution are labeled as Google Plus

and trained. Thus we have 4 classes and details of the dataset

used for this experiment is shown in Table XII. Classification

accuracy of various algorithms are also shown in Table XIII,

Table XIV and Table XV. We can notice from these tables

that classification accuracy improved for all the algorithms in

comparison to the previous case while improving or retaining

the recall of Hangout packets as shown in Table XVI.

TABLE XIII
CONFUSION MATRIX FOR NAVE BAYES CLASSIFICATION

Actual
Label

Classified
as Not
Hangout

Classified
as
Hangout

Classified
as Gmail

Classified
as Google
Plus

Others 1979706 0 2473 2775
Hangout 84 344299 0 0
Gmail 0 0 238961 0
Google
Plus

0 0 94855

TABLE XIV
CONFUSION MATRIX FOR J48 CLASSIFICATION

Actual
Label

Classified
as Not
Hangout

Classified
as
Hangout

Classified
as Gmail

Classified
as Google
Plus

Others 1984954 0 0 0
Hangout 0 344383 0 0
Gmail 0 0 238961 0
Google
Plus

0 0 0 94855

TABLE XV
CONFUSION MATRIX FOR ADABOOST CLASSIFICATION

Actual
Label

Classified
as Not
Hangout

Classified
as
Hangout

Classified
as Gmail

Classified
as Google
Plus

Others 1984954 0 0 0
Hangout 0 344383 0 0
Gmail 0 87602 151359 0
Google
Plus

0 84987 9868 0

VI. CONCLUSIONS

Network traffic classification is an important task to provide

differentiated service quality to various applications and also in



TABLE XII
DATASET DETAILS FOR HANGOUT, GOOGLE PLUS AND GMAIL TRAFFIC IDENTIFICATION

Packet Type Packet
Count

Percentage Duration of
Data Collection

Size of Data

Google Hangout 344383 12.9% 4 Hours 200 MB
Gmail 238961 8.9% 4 Hours 400 MB
Non Hangout 1984954 74.6% 12 Hours 1.5 GB
Google plus 94855 3.6% Taken from

Hangout and
gmail traces

NA

TABLE XVI
RECALL FOR 4 CLASS CLASSIFICATION

Algorithm Recall
Naive Base 99.98%

AdaBoost 100.0%
J48 100.0%

security monitoring. Several organizations and Internet Service

Providers perform network traffic classification. In this paper

we used application semantics to identify a set of features

which are subsequently used by a classification algorithm to

identify the class to which a packet belongs. We experimented

with a dataset collected for Google Hangout and reported

its detection performance using few classification algorithms.

Specifically we used Naive Base, j48 and AdaBoost classi-

fication algorithms to assess the detection performance and

reported results. Since Google services uses common behavior

between them we find the classification where the common

behavior is identified separately performs better in comparison

to others. The ability to identify packets at this granularity

permits to apply QoS at ease. In the future we would like to

extend this work with other Google services and also for other

peer-to-peer application identification.
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